
Householder Dense layer: an orthogonal weight parametrization for dimensionality reduction in
Neural Networks

submitted in partial fulfillment for the degree of master of science

Jan Jetze Beitler
10416641

master information studies
data science

faculty of science
university of amsterdam

2018-06-26

Supervisor
Title, Name MSc, Ivan Sosnovik
Affiliation UvA, FNWI
Email sosnovikivan@gmail.com

ABSTRACT
Orthogonal matrices have already been used in Neural Networks be-
cause of their good properties such as invertibility and norm preser-
vation. However, orthogonal matrices can be used only in mappings
directly parametrized by square matrices. This means that these
mappings only allow for dimensionality preserving transformations.
In order to achieve the desired properties with semi-orthogonal
matrices, several techniques with use of Riemannian optimization
over Stiefel manifolds were used. A disadvantage of this method
is the requirement of complicated computations. Besides, such a
mapping is non-invertible. Here we present a method that com-
bines several useful properties of orthogonal matrices and allows
for dimensionality reduction at the same time. We demonstrate
that this method is able to achieve similar results to comparable
methods. The method we propose, however, has significantly fewer
parameters and it converges to be invertible.

1 INTRODUCTION
In many machine learning and computer vision tasks, such as text
translation, object classification, image analysis, object tracking,
etc. the problem can be formulated as an approximation of the
relationship between an input (raw data) and a target. During the
lasts decade, Deep Neural Networks demonstrated a great success
in the above-described tasks. A Deep Neural Network (DNN) is a
composition of multiple simple nonlinear functions. Each function
usually consists of a linear transformation with learnable weights
followed by a nonlinear element-wise operation.

By training, a DNN is able to represent a complex and nontrivial
relationship between an input and an output. However, it is also
prone to fitting trained data too well not being able to generalize
for unseen data. Orthogonal matrices are able to solve this problem
due to their ability to optimize over low embedded submanifolds
[7].

Yet another great concern in machine learning is the problem of
vanishing and exploding gradients in Recurrent Neural Networks
(RNNs)[2] [18] [8] [12]. Especially when training long-term depen-
dencies, gradients can become so small or large, that weights are
updated in the same magnitude. A spectral norm smaller then one
can raise exploding gradients, while a spectral norm bigger then
one can cause vanishing gradients. Orthogonal matrices have the
property to preserve norm and thus repeated iterative multiplica-
tion of a vector with an orthogonal matrix doesn’t affect the norm
of this vector. Because of this property, parameterizing a transi-
tion matrix in such a way that it is orthogonal, can thus solve the
problem of vanishing or exploding gradients.

Orthogonal matrices are also used in normalizing flows [10] [16].
By applying a series of invertible functions to an input, a more
flexible distribution can be obtained in the output. This flexibility
decreases the distance between the derived and the true posterior
distribution of the output.

However, in all of the above-mentioned cases multiplying a
vector with the orthogonal matrix returns a vector with the same
dimensions. This means that such matrices should be incorporated

in Neural Networks alongwithmappings that do reduce the number
of dimensions. In this case, the size of the Network and its learnable
parameters does increase. This raises one question: Is it possible
to create an orthogonal mapping that normalizes a vector, reduces
the number of its dimensions and is invertible at the same time?

In current paper, we present a method that combines several
useful properties of orthogonal matrices and allows for dimension-
ality reduction at the same time. We modify the general linear
(fully-connected) layer, by replacing the arbitrary matrix with an
orthogonal one. The output of the layer is split into two parts. The
first one is feed to the next layer, while the second is penalized to
be equal to zero. The mapping is absolutely invertible by design
up until the splitting operation. The total function is trained to be
invertible on the provided data samples.

The main contributions of our method, which will be shown in
the results, are:

• The proposed method preserves the distributions with zero
mean and unit variance up to a scale factor and a shift.

• The trained layer approximates an invertible nonsingular
mapping.

• The proposed parametrization of themapping is low-parametric.
It stores significantly less number of trainable weights com-
paring to the widely-used fully-connected layer.

The current paper is structured as follows: the next section dis-
cusses the related work. Section 3 describes the main idea of the
current method. We discuss the theoretical aspects of the mapping,
as well as its effective implementation. The exhaustive set of exper-
iments is demonstrated in Section 4. We summarize the paper and
discuss the results in section 5 and 6.

2 RELATEDWORK
The problem of vanishing and exploding gradients in RNNs could
be solved by parameterizing the transition matrices with unitary
weight matrices[2], which is analogue with orthogonal matrices but
for the complex domain. Because of the norm preserving property
of these matrices, the vanishing and exploding gradient problem
is tackled. However, the parametrization used is not able to cover
all unitary matrices if the weight matrix has more then 7 dimen-
sions. By constraining the gradient to lie on the Stiefel manifold,
a more complete set of unitary matrices can be constructed [18].
Yet another limitation of the parametrization used is the fact that
it creates square matrices. This implies that multiplying a vector
with this matrix returns a vector with the same dimensions. Such
parametrization would increase the size of the DNNs as these Net-
works are dependent on reducing the number of dimensions. By
creating rectangular orthogonal matrices, a DNN could be regular-
ized with the use of orthogonal matrices[7].

Orthogonal matrices are also utilized in normalizing flows to
enrich the variational posterior distribution. A normalizing flow
is a series of invertible transformations. Utilizing an orthogonal
matrix normalizes activations and offers the ability to de-correlate
if the input is whitened. [16] utilizes this property by implementing
a weight matrix constructed from a series of Householder matrices.

The matrix is placed in between two layers that reduce the number
of dimensions of its input. Again, the orthogonal matrix itself does
not reduce dimensions.

Invertibility of mappings can be achieved by using other types
of transformations such as real-valued non-volume preserving (real
NVP) transformations. Another method of normalizing activations
was introduced by [3]. It allows for approximating more flexible
distributions. Real NVP is able to perform efficient and exact infer-
ence. Because the transformations are invertible, real NVP is also
able to reconstruct the original input.

Another DNN architecture where invertibility is implemented
is in RevNet [4]. Residual Networks pushed state-of-the-art per-
formance on image classification as networks grow both deeper
and wider. This, however, also implies more memory usage as the
activation of each layer should be stored. RevNet circumvents this
bottleneck with invertible layers that can reconstruct the activa-
tions of its preceding layer. This is, however, limited to a hand-full
of non-reversible layers, such as max-pooling. In i-RevNet, these
layers are substituted by linear and invertible mappings that reduce
the spatial resolution [9]. This makes i-RevNet fully invertible up
until the final layer, which projects onto the classes. This paper also
proves that losing information is not a necessary property of a Net-
work to learn representations that generalize well on complicated
data.

Despite the success of the above-described methods, none of
them demonstrated an approach of creating an invertible mapping
that has zero mean and unit variance and reduces the number of
dimensions at the same time.

3 METHODOLOGY
The architecture of proposed method is visualized in figure 1. This
architecture can be represented as

G = S ◦ f , where f − invertible

or
S(f (x)) = x̃ , r (1)

The first part, f (x), is a linear invertible mapping from an input to
an output. Because f (x) is parametrized with orthogonal matrices,
it accommodates useful properties of orthogonal matrices such as
norm preservation. Because of the orthogonality restriction, this
part of the method is invertible by design. The second part of the
method, S(·), performs a splitting operation on the output of f (x). It
is trained to be invertible by penalizing its norm to be zero. Because
of the property of norm preservation, the sum of norms of x̃ and
r is equal to the norm of x. If the norm of r is 0, the norm of x̃ is
equal to the norm of x and thus all information is kept in the new
dimensions.

3.1 Orthogonal invertible module
Here we propose a linear invertible module of the form

y =Wx + b (2)

with W being any invertible matrix. One such type of invertible
matrices are orthogonal matrices. This is the class of matrices that
satisfy

XTX = XXT = I (3)

Figure 1: Architecture of proposed method. The first box de-
scribes the normal flow, the second box the inverse which is
used in an autoencoder.

and therefore
Q−1 = QT (4)

In current method, H is parametrized with a series of House-
holder transformations. The Householder transformation x → Hx
is defined by the matrix H of the following form [6]:

H = I − 2
vvT

vTv
(5)

where H is orthogonal with determinant −1.
The Householder cascade is created by multiplying a series of

Householder matrices each with a decreasing size of vector v . The
size of this vector is determined by both n, the desired size of the
cascade, and s, the step size each following vector should be de-
creased with. Each Householder matrix is placed in a subspace of an
identity matrix with dimension n to allow for matrix multiplication.

W = HnHn−1 . . .H2 (6)

with

Hk =

[
In−k 0
0 Ik − 2vv

T

vTv

]
(7)

As H is a reflection with a determinant of −1, W is either a
reflection or a rotation, depending on the number of Householder
matrices used in the cascade. This transformation is then scaled by
γ and shifted by the bias-term to get the proposed form

x̃ = γWx + b (8)
2

The number of parameters for this method is dependent on both
the desired dimension, n, of the Householder cascade and the step
size, s, to decrease each factor with. The maximum number of
parameters can be approximated by

n(n + s)
2s

(9)

3.2 Compact WY transformation
The naive Householder cascading implementation is a heavy com-
putational algorithm as it needs to do many matrix multiplications.
A more lightweight algorithm is based on the compact WY trans-
formation and is able to reach the same outcome [14][21]. Here we
refer to it as the Householder WY transformation.

The Householder WY transformation has the following form:

W = In −UT−1UT (10)

with

U =
[
vn vn−1 . . .v2

]
, vk =

[
0:n−k
v

]
and

T =


0.5 1

. . .

0 0.5

 × (UTU)

Although the Householder WY transformation has fewer matrix
multiplications to perform, it relies heavily on the computation
of an inverse matrix. This implies that any gained efficiency is
dependent on the machines ability to efficiently compute inverse
matrices.

Figure 2 shows a comparison for the time consumption of both
the naive Householder algorithm and the Householder WY trans-
formation. The number of dimensions on the x-axis denotes the
desired size of the cascade, vectors are created with a step size of 1.
Time consumption is measured for both a single forward computa-
tion and a forward computation followed by backpropagation. For
comparison reasons a third matrix was added which was initialized
with random values. This figure shows that, especially for a grow-
ing number of dimensions, the Householder WY transformation is
more efficient in terms of time consumption.

3.3 Splitting
The second part of the proposed method is reducing the number
of dimensions. This is done by a function that splits the output of
the mapping into a representation of the input distribution and a
residual part.

S(f (x)) = [x̃:m ; r], r = x̃m: (11)

Because of the norm preserving property of orthogonal matrices,
the output of f (·) has the same norm as its input. Penalizing the
residual to be zero, drives its norm to zero. This implies that the
norm of x̃:m tends to be equal to the norm of x. In other words, the
information of the input distribution is transformed to the lower
dimensional space of x̃:m . By substituting the residual with zeros,
the inverse of the mapping is able to transform the information
from the low dimensional space into the original dimensional space.
If r → 0 then

Figure 2: Comparison of the time consumption for different
cascading techniques with a step size of 1 for both a single
forward pass and a forward pass followed by backpropaga-
tion. The number of dimensions represents the number of
columns, and thus number of rows, of the Householder cas-
cade. Shown experiments are executed on a Tesla K80 GPU.

f −1([x̃:m ; 0]) → x

and thus
| |x − f −1(f (x))| |p → 0 (12)

The amount of information lost in the split is computed as the
norm of r normalized to the norm of f (x),

(| |r | |2
| |x̃ | |2

)2.
In order to penalize r towards zero the norm of r is added to the

Networks loss in form of a regularization term. To emphasize the
importance of the fraction of information kept, the regularization
term is multiplied with β . A higher β increase the regularization
term which triggers the Network to put more effort in decreasing
the norm of r. This way, less information is lost in the split.

Lr eд = | |[x̃:m , r] − [x̃:m , 0]| |p = | |r | |p (13)

L = L0 + Lr eд ∗ β (14)
However, when implementing multiple Householder Dense layers
in an architecture, we want to minimize the loss of information
of the input, not just the loss of information of the last layer. To
calculate the total loss of information, we need to take the product
of information kept in each layer and subtract this from one. The
information kept in a layer is the information lost, subtracted from
1. The square root of this gives us the multiple layer loss. Let n be
the number of Householder Dense layers, then the information lost
is equal to

Lr eд = 1 −
n∏
i=1

[
1 −

(| |r i | |2
| |x̃ i | |2

)2]
(15)

3.4 Normalization
Equation 16 proves that multiplying vector x with parametrized
matrix H does not change the distribution of x. This implies that
multiplication with H keeps Zero Mean and Unit Variance (ZMUV).

3

Method Invertible Preserves ZMUV Allows dimensionality reduction # trainable weights
Linear − − + NM
uRNN [18] + + −
HH-Flows [16] + + −
real NVP [3] + − −
OWN [7] − + + NM

Ours ± + +
N (N+s)

2s
Table 1: Comparison of properties. s is a hyper-parameter for the step size in choosing factors for the Householder Dense
layer.

For this, assume the mean of x is E[x] = 0 and the covariance
matrix of x is cov(x) = σ 2In×n . Then

E[Hx] = E[H]E[x] = 0

cov(Hx) = E[(Hx − E[Hx])(Hx − E[Hx])T]

= E[Hx(Hx)T]

= E[HxxTHT]

= HE[xxT]HT

= Hcov(x)HT

= Hσ 2In×nHT

= σ 2In×nHHT

= σ 2In×n

(16)

However, in proposed method vector x is not only multiplied
with matrix H but also it is multiplied with γ and a bias is added.
Equation 17 shows that, because of these steps, the standard devia-
tion of input x gets multiplied byγ 2 and themean of its distributions
gets the bias added. This means that the distribution of vector x
gets scaled and shifted.

E(γHx + b) = E[γ]E[Hx] + E[b] = b
cov(γHx + b) = γ 2cov(Hx)

= γ 2σ 2In×n

(17)

The last process in proposed method is splitting the output vec-
tor. Equation 18 proves that this split operation does not alter the
distribution.

E[x:m] = E[Im×n (γHx + b)]
= Im×nE[γHx + b]
= Im×nb

= b:m

cov(x:m) = cov(Im×n (γHx + b))

= Im×ncov(γHx + b)ITm×n

= γ 2σ 2Im×m

(18)

This summarizes proposed method from equation 8 to have:

E[S(f (x))] = b:m
cov(S(f (x)) = γ 2σ 2Im×m

(19)

4 EXPERIMENTS
The experiments in this section are conducted on two image classi-
fication datasets, MNIST and FashionMNIST. Both datasets consist
of 60.000 train and 10.000 test images of size 28 by 28. Each image
has a single color channel and is labeled with one out of ten pos-
sible labels. The MNIST dataset consists of handwritten digits. As
state-of-the-art architectures already outperformed human classi-
fication on MNIST with an accuracy of 99.79 percent [17], a more
sophisticated dataset with the same accessibility, FashionMNIST,
was provided [19]. The FashionMNIST dataset consists of 10 differ-
ent product types from the Zalando website and has, to the best
of our knowledge, a state-of-the-art accuracy of 94.41 percent [11]
and a top-5 state-of-the-art accuracy of 89.35 percent [1]. Although
both datasets do not represent real-life classification tasks they
allow for low-computably tests on prototype algorithms. Because
of the time restriction for this research, proposed algorithm was
not tested on larger datasets. One exception was made for the ex-
periment of normalization, which was conducted on CIFAR10, a
dataset containing real-life images of size 32 by 32. Each image in
this dataset consists of 3 color channels and is labeled with one out
of ten labels.

The experiments described were all done with a step size, for the
creation of the Householder cascade, of 10. This showed the best
trade-off between different performance measures and the number
of trainable parameters. For the penalization term the Frobenius
norm was chosen as it gave the best results in a trade-off between
accuracy and the loss of information. The presented method was,
unless mentioned otherwise, implemented in a LeNet [20] architec-
ture as replacement of the first fully-connected Dense layer. From
now on we will refer to this architecture as HouseNet. Performance
was then tested against a LeNet architecture with the original Dense
layer and the same number of units. This architecture is shown
in figure 3. In the remainder of this paper, we will call a layer
parametrized with proposed method a Householder Dense layer.

Table 1 shows a comparison of different properties of our method
with others. Both the columns for invertibility and Zero Mean Unit
Variance will be shown in the following subsections.

4.1 Normalization
Figures 4a and 4b show the capability of both a Dense and a House-
holder Dense layer to normalize its output. The networks consist of
two layers, both either Dense layers or Householder Dense layers.
The red and green line represent the output distribution of the first
layer.

4

Accuracy Comparison
Model settings Mnist FashionMnist Seconds per epoch FC parameters
LeNet 0.9900 0.8903 2.88 32896
LeNet with OWN 0.9848 0.8772 77.33 32896
HouseNet, β 0.05 0.9904 0.8921 5.58 3662
HouseNet, β 0.1 0.9888 0.8807 5.58 3662

Table 2: Comparison of accuracies for different models. Experiments were conducted with a single linear layer with 128 units.
Bold numbers are best scores.

input
Conv layer−−−−−−−−→

6@3x3
ReLU MaxPool−−−−−−−→

2x2
ReLU

Conv layer−−−−−−−−→
16@5x5

ReLU MaxPool−−−−−−−→
2x2

ReLU
Dense layer−−−−−−−−−→
128 units

ReLU
Dense layer−−−−−−−−−→

10 units
x softmax−−−−−−→ output

Figure 3: The architecture of a basic LeNet model.

(a) Normalization of Dense layer.

(b) Normalization of Householder Dense layer.

Figure 4: Normalization on CIFAR10. Both models were
made up of either two Householder Dense layers or two ba-
sic Dense layers. The red and green line represent the distri-
bution of the first layer’s output.

The orange area represents the distribution of CIFAR10, the input
for the first layer in both models, which has a ZMUV distribution
on initialization. As shown in figure 4b the Householder Dense
layer follows the same ZMUV distribution. This reinforces equation
16 as the bias in this layer is initialized with a value of zero and
γ with one. The Dense layer in figure 4a shows a small deviation
from one in the variance, but it still follows a Gaussian distribution.

As the networks get input images to train on, the distributions
change. Figure 4a shows that a Dense layer, after training, gets
distributed within a wide range. As the next layer assumes the
input distribution to be ZMUV it will get difficulties adapting its
values to this widespread distribution. The Householder Dense
layer, however, keeps a distribution that is quite similar to ZMUV. It
got scaled byγ that was trained and is not equal to one anymore, and
shifted by the bias. These findings reinforce the prove of equation
19 that proposed method preserves ZMUV up to a scale and shift.

4.2 Orthogonal Linear model
To compare the performance of proposed method, we trained the
basic LeNet model, LeNet with Orthogonal Weight Normalization
(OWN) [7] and HouseNet, all with 128 units in the fully-connected
layer. For the penalization of the Householder Dense layer two
β ’s were chosen, 0.05 and 0.1, which showed the best results in a
trade-off between high accuracy and minimum loss of information.
Basic LeNet and HouseNet were trained for 50 epochs with Adam
optimizer and ReLU activation. The learning rate was initialized
with 0.01 and decreased, after 20 epochs, to 0.001. For LeNet with
OWN, the number of epochs was increased to 100 and the learning
rate was decreased at 40 epochs.

Table 2 shows the results of the experiment. For both MNIST
and FashionMNIST HouseNet was able to get the highest accuracy,
although basic LeNet got a comparable score at both datasets. How-
ever, the number of parameters for the Householder Dense layer
is significantly smaller compared to that of a basic Dense layer or
OWN. But although the Householder Dense layer has almost a
fraction 10 fewer parameters compared to a basic Dense layer, basic
LeNet does train faster then HouseNet. This is probably due to the
inverse matrix in the Householder Dense layer.

5

(a) Train accuracy per epoch for the MNIST dataset.

(b) Train accuracy per epoch for the FashionMNIST dataset.

Figure 5: Train accuracy for bothMNIST and FashionMNIST.
Solid lines are the mean per epoch, the lighter color is its
standard deviation. For LeNet with OWN the number of
epochs on the x-axis have to be multiplied by 2.

Figures 5a and 5b show the train accuracy per epoch. While both
basic LeNet and HouseNet seem to be prone to overfitting, basic
LeNet has the highest rate. This is especially visible on FashionM-
NIST where it almost reaches 99 percent accuracy on train data,
but a ten percent point lower score on test data. For HouseNet, a
higher beta seems to reduce the rate of overfitting. Compared to
LeNet with OWN, both basic LeNet and HouseNet behave more
stable during training. Something also pointed out by the paper
about Orthogonal Weight Normalization[7]. However, the rate of
overfitting is lower, especially on MNIST where the gap between
train and test accuracy is less dan 0.005.

4.3 Loss of information
Several of the previous works showed that the loss of information
may be a key for successful classification of images [15]. At the

Figure 6: Trade-off between accuracy and loss of informa-
tion. Plotted with several β ’s, low β ’s have higher loss of in-
formation.

Figure 7: Loss of information per epoch on MNIST.

same time, it is not actually required because you can still classify
correctly with no loss up until the last layer [9]. In figure 6 we show
the continues dependency between the loss of information and the
accuracy, which fits fine with the previous results. It is true that
the loss is not actually required for successful results. Nevertheless,
a minimal loss of info (5 percent) makes it easier for the neural
network to achieve higher accuracy.

Figure 7 shows how the loss of information on train data evolves
over time. Interestingly, after only five epochs the model already
got to its stabilizing rate of information loss. At the tenth epoch
there is another drop, because of reducing the learning rate from
0.01 to 0.001, but again the loss of information does not decrease
significantly anymore. These remarks seem to especially hold for
lower values of β .

6

input
HH Dense−−−−−−−−−→
717 units

LeakyReLU
HH Dense−−−−−−−−−→
350 units

LeakyReLU
HH Dense−−−−−−−−−→
250 units

x
HH i-Dense−−−−−−−−−−→
350 units

i-LeakyReLU
HH i-Dense−−−−−−−−−−→
717 units

i-LeakyReLU
HH i-Dense−−−−−−−−−−→
784 units

output

Figure 8: Architecture of autoencoder with HH i-Dense being the inverse of Householder Dense layer and i-LeakyReLU(x, α)
defined asmin(x, xα).

Figure 9: Output of the autoencoder. The single layer autoen-
coder reduced the number of dimensions from 784 to 717.
The three layer autoencoder reduced the number of dimen-
sions from 784 to 250.

4.4 Autoencoding
As proposed method is partially invertible by design and partially
invertible by training, an autoencoder made up of only Householder
Dense layers only has to train the encoding part of the Network.
Once the dimensions are reduced to a certain number, the model can
reproduce the original input by simply using the derived weights.
For every layer first the residuals of the output vector are substituted
with zeros, then the bias is subtracted and the outcome is divided
by γ . At last, the vector is multiplied by the inverse of the trained
transition matrix. This process can be even more simplified by
the property of orthogonal matrices that its inverse is equal to
its transpose. Retrieving the transposed of a matrix is much less
computational intensive as retrieving its inverse is. The lower box
in figure 1 visualizes this process of decoding.

In the autoencoder, however, an invertible activation function is
crucial. As ReLU [13] is defined asmax(x , 0), no information is kept
when an input is negative. LeakyReLU [5] is a modification of ReLU
and is defined asmax(x ,αx) with a standard value for α being 0.2.
With this activation function, the magnitude of each negative input
is just reduced, each input value still having a unique output value.
The inverse of LeakyReLU would be defined asmin(x , xα).

For an autoencoder, there is no need to add a regularization term
and if added, it behaves differently as in the case of classification. If
X is the input and X̃ the output of an autoencoder, then

L0 =
1
N

N∑
i=0

(Xi − X̃i)2 (20)

Because X̃ = f −1([x̃:m ; 0]) with 0 being the substitute of r, if
| |r | |p , 0 then L0 , 0. This way, the deviation of r from zero
is already incorporated into the loss function of an autoencoder. In
this case, adding | |r | |p to the loss in the form of a regularization
termmerely serves as an emphasis of the importance of information
preservation.

Summing pixels with the same index over all images in the train
set of the MNIST dataset shows that 67 pixels do not have any
information in any picture. This implies that 67 dimensions could
be removed without any loss of information. This is shown in the
second column of figure 9. These results were obtained with a
single layer autoencoder with 717 units. After training for only two
epochs a Mean Squared Error (MSE) and information loss rate of 0
were reached.

The first layer in our autoencoder thus reduces the number of
dimensions from 784 to 717. The number of units in every next
layer is determined to keep the loss of information in five epochs
below one percent. This brought us to the next layers reducing the
number of dimensions to 350 and 250. The architecture is shown in
figure 8. The result is shown in the third column of figure 9. After
training for 20 epochs, each with an average time of 34 seconds,
the MSE was 0.0057 and the loss of information rate 0.0087. This
shows that a series of blocks, consisting of a Householder Dense
layer and LeakyReLU, is able to reduce the dimensions of the input
data by almost 70 percent with a loss of information of less than
one percent.

5 CONCLUSION
Orthogonal matrices are commonly used in different types of Neural
Networks. In Recurrent Neural Networks, they are utilized because
of their norm preserving property. By using orthogonal matrices
the problem of vanishing and exploding gradients can be solved.
Also in normalizing flows orthogonal matrices are used to obtain a
more flexible distribution. In many of these applications, however,
these matrices are not able to reduce the number of dimensions.

In this research, we use orthogonal matrices to create a nor-
malizing, invertible mapping that is able to reduce the number of
dimensions. We parametrize a weight matrix with a series of House-
holder matrices, which are orthogonal. By multiplying an input
with the weight matrix and penalizing part of the output to be zero,
the dimensions are reduced with a minimal loss of information. The
layer constructed from this weight matrix, the Householder Dense
layer, is able to reach similar performance, in terms of accuracy,

7

compared to a basic Dense layer. The number of parameters is,
however, reduced by almost a factor ten.

The research question to be answered was if it is possible to
create a mapping that normalizes a vector, reduces the number of
dimensions and is invertible at the same time. Table 1 in section 4
summarizes the answers to this question. In section 4.2 we showed
that proposed method of reducing dimensions does indeed work
and is able to reach comparable results with significantly fewer
parameters. This was again shown in section 4.4 where an autoen-
coder of only Householder Dense layers was able to reduce the
number of dimensions by almost 70 percent. At the same time, this
section showed that the proposed mapping is invertible as it is able
to reconstruct the original image from the lower dimensional space
with only a minimal error. However, the method is partially invert-
ible by design and partially by training. The ability to normalize a
vector is given in section 4.1. Here it was shown that the method
normalizes an input vector close to a Zero Mean Unit Variance
(ZMUV) Gaussian distribution with a scale and shift. Although it
does not normalize to exact unit variance, it performs much better
compared to a basic Dense layer.

6 DISCUSSION
The experiments conducted in this research were all done, with
exception of the test for normalization, on the MNIST and Fashion-
MNIST datasets. As these are well-known toy-datasets, it could be
interesting do mimic the experiments on more advanced datasets
and test whether the conclusions still hold.

In this research, the experiments were conducted with a prede-
fined set of hyper-parameters. Some of these hyper-parameters are
the norm used in the penalization term, the factors with which the
Householder cascade is created and the β used for penalization. It
could be interesting to more intensively study their behavior as the
chosen set might be just a sub-optimum. Also β is difficult to choose
as the trigger for the Network to minimize the loss of information
is also dependent on the magnitude of the basic loss.

ACKNOWLEDGMENTS
The writer of this research would like to take this moment to thank
his supervisor, Ivan Sosnovik, for the great support during this
research and 1-on-1 lectures he gave. Also he would like to thank
his parents for their great support not only for the period of this
research, but for as long as he has been studying.

REFERENCES
[1] Abien Fred Agarap. 2018. Deep Learning using Rectified Linear Units (ReLU). 1

(2018). http://arxiv.org/abs/1803.08375
[2] Martin Arjovsky, Amar Shah, and Yoshua Bengio. 2015. Unitary Evolution

Recurrent Neural Networks. 48 (2015). http://arxiv.org/abs/1511.06464
[3] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. 2017. Density estimation

using real NVP. (2017).
[4] Aidan N. Gomez, Mengye Ren, Raquel Urtasun, and Roger B. Grosse. 2017. The

Reversible Residual Network: Backpropagation Without Storing Activations.
(2017), 1–14. http://arxiv.org/abs/1707.04585

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Delving deep
into rectifiers: Surpassing human-level performance on imagenet classification.
Proceedings of the IEEE International Conference on Computer Vision 2015 Inter
(2015), 1026–1034. DOI:http://dx.doi.org/10.1109/ICCV.2015.123

[6] Alston S. Householder. 1958. Unitary Triangularization of a NonsymmetricMatrix.
J. ACM 5, 4 (1958), 339–342. DOI:http://dx.doi.org/10.1145/320941.320947

[7] Lei Huang, Xianglong Liu, Bo Lang, Adams Wei Yu, Yongliang Wang, and Bo
Li. 2017. Orthogonal Weight Normalization: Solution to Optimization over

Multiple Dependent Stiefel Manifolds in Deep Neural Networks. (2017). http:
//arxiv.org/abs/1709.06079

[8] Stephanie L. Hyland and Gunnar Rätsch. 2016. Learning Unitary Operators with
Help From u(n). 2 (2016), 2050–2058. http://arxiv.org/abs/1607.04903

[9] Jörn-Henrik Jacobsen, Arnold Smeulders, and Edouard Oyallon. 2018. i-
RevNet: Deep Invertible Networks. (2018), 1–11. DOI:http://dx.doi.org/10.1051/
0004-6361/201527329

[10] Danilo Jimenez Rezende and Shakir Mohamed. 2015. Variational Inference with
Normalizing Flows. (2015). https://arxiv.org/pdf/1505.05770.pdf

[11] Franco Manessi and Alessandro Rozza. 2018. Learning Combinations of Activa-
tion Functions. (2018). http://arxiv.org/abs/1801.09403

[12] Zakaria Mhammedi, Andrew Hellicar, Ashfaqur Rahman, and James Bailey. 2016.
Efficient Orthogonal Parametrisation of Recurrent Neural Networks Using House-
holder Reflections. (2016). http://arxiv.org/abs/1612.00188

[13] VinodNair andGeoffrey EHinton. 2010. Rectified Linear Units Improve Restricted
Boltzmann Machines. Proceedings of the 27th International Conference on Machine
Learning 3 (2010), 807–814. DOI:http://dx.doi.org/10.1.1.165.6419

[14] Robert Schreiber and Charles Van Loan. 1989. A Storage-Efficient WY Represen-
tation for Products of Householder Transformations. SIAM J. Sci. Statist. Comput.
10, 1 (1989), 53–57. DOI:http://dx.doi.org/10.1137/0910005

[15] Naftali Tishby and Noga Zaslavsky. 2015. Deep Learning and the Information
Bottleneck Principle. (2015). DOI:http://dx.doi.org/10.1109/ITW.2015.7133169

[16] Jakub M Tomczak and Max Welling. 2017. Improving Variational Auto-Encoders
using Householder Flow. (2017). https://arxiv.org/pdf/1611.09630.pdf

[17] Li Wan, Matthew Zeiler, Sixin Zhang, Yann Lecun, and Rob Fergus. 2013. Regu-
larization of Neural Networks using DropConnect. (2013). https://cs.nyu.edu/
~wanli/dropc/dropc.pdf

[18] Scott Wisdom, Thomas Powers, John R. Hershey, Jonathan Le Roux, and Les
Atlas. 2016. Full-Capacity Unitary Recurrent Neural Networks. Nips (2016), 1–9.
http://arxiv.org/abs/1611.00035

[19] Han Xiao, Kashif Rasul, and Roland Vollgraf. 2017. Fashion-MNIST: a Novel
Image Dataset for Benchmarking Machine Learning Algorithms. (2017), 1–6.
http://arxiv.org/abs/1708.07747

[20] Y. LeCun, L. D.Jackel, L. Bottou, A. Brunot, C. Cortes, J.˜S.˜Denker, H.˜Drucker, I.
Guyon, U. A. Müller, E. Säckinger, P. Simard, and V. Vapnik. 1995. Comparison
of learning algorithms for handwritten digit recognition. Proceedings {ICANN’95}
- -International Conference on Artificial Neural Networks II (1995), 53–60.

[21] Yusaku Yamamoto and Yusuke Hirota. 2011. A parallel algorithm for incremental
orthogonalization based on the compact WY representation. JSIAM Letters 3, 0
(2011), 89–92. DOI:http://dx.doi.org/10.14495/jsiaml.3.89

8

http://arxiv.org/abs/1803.08375
http://arxiv.org/abs/1511.06464
http://arxiv.org/abs/1707.04585
http://dx.doi.org/10.1109/ICCV.2015.123
http://dx.doi.org/10.1145/320941.320947
http://arxiv.org/abs/1709.06079
http://arxiv.org/abs/1709.06079
http://arxiv.org/abs/1607.04903
http://dx.doi.org/10.1051/0004-6361/201527329
http://dx.doi.org/10.1051/0004-6361/201527329
https://arxiv.org/pdf/1505.05770.pdf
http://arxiv.org/abs/1801.09403
http://arxiv.org/abs/1612.00188
http://dx.doi.org/10.1.1.165.6419
http://dx.doi.org/10.1137/0910005
http://dx.doi.org/10.1109/ITW.2015.7133169
https://arxiv.org/pdf/1611.09630.pdf
https://cs.nyu.edu/~wanli/dropc/dropc.pdf
https://cs.nyu.edu/~wanli/dropc/dropc.pdf
http://arxiv.org/abs/1611.00035
http://arxiv.org/abs/1708.07747
http://dx.doi.org/10.14495/jsiaml.3.89

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Orthogonal invertible module
	3.2 Compact WY transformation
	3.3 Splitting
	3.4 Normalization

	4 Experiments
	4.1 Normalization
	4.2 Orthogonal Linear model
	4.3 Loss of information
	4.4 Autoencoding

	5 Conclusion
	6 discussion
	References

